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Abstract
We study theoretically heavy fermion superconductors CeMIn5 (M = Co, Rh,
Ir). CeCoIn5 and CeIrIn5 that become superconducting at ambient pressure
with Tc = 2.3 K and 0.4 K, respectively. On the other hand, CeRhIn5 is
an antiferromagnet at ambient pressure and becomes superconducting under
pressures greater than 1.6 GPa. With regards to the superconductivity, the
existence of line nodes is indicated by nuclear-quadrupole-resonance (NQR),
thermal conductivity, specific heat and electrical resistivity measurements.
However, the pairing symmetry between dx2−y2 and dxy is controversial.
Therefore, we investigate the gap structure of CeMIn5 by a detailed calculation.
We introduce a three-dimensional periodic Anderson model (3D-PAM) in
order to reproduce the band characteristics of CeMIn5. Thus, we identify the
gap structure of CeMIn5 as the dx2−y2 symmetry by solving the Èliashberg
equations. In addition, we discuss the pressure dependence of Tc and show that
two factors determine Tc. One factor is the momentum dependence of quasi-
particle interaction and the other factor is the wavefunction renormalization
factor. Thus, we have explained the superconductivity in CeMIn5 using the
Fermi liquid theory.

1. Introduction

We study heavy fermion superconductors CeMIn5 (M = Co, Rh, Ir) with the periodic Anderson
model. CeCoIn5 and CeIrIn5 become superconducting at ambient pressure with Tc = 2.3 K
and 0.4 K, respectively [1, 2]. On the other hand, CeRhIn5 is an antiferromagnet at ambient
pressure and is superconducting under pressure P > 1.6 GPa [3, 4]. The existence of line
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nodes is indicated by nuclear-quadrupole-resonance (NQR) [5–10], thermal conductivity [11],
specific heat [1–4, 11, 12] and electrical resistivity [1–3] measurements. However, the pairing
symmetry between dx2−y2 and dxy is controversial. The thermal conductivity [13–18] and
specific heat [19] are measured in a rotating magnetic field, in order to identify the pairing
symmetry of CeCoIn5. Izawa et al assert that the thermal conductivity measurements suggest
dx2−y2 pairing symmetry [13–18]; on the other hand, Aoki et al assert that the specific heat
measurements suggest dxy symmetry [19]. Therefore, we identify the pairing symmetry of
CeMIn5 by a numerical calculation with the use of the Fermi liquid theory.

A similar calculation has already been performed using a two-dimensional (2D) Hubbard
model [20, 21]. However, the 2D Hubbard model is insufficient to describe CeMIn5, since
the two-dimensionality of the Fermi surface is not very distinct. Therefore, we take into
account the three-dimensionality in order to reproduce the band structure obtained from
band calculations [22–28]. In order to reproduce these characteristics, we introduce a three-
dimensional periodic Anderson model (3D-PAM) [29]. A study of the pairing symmetry
in CeMIn5 has already been published [30]. However, several mistakes have been found
in that paper. The main mistake is in the calculation of the eigenvalue of the Èliashberg
equation for dx2−y2 and dxy symmetry. To correct these mistakes, we refined the calculation.
In this paper, we improve the model by introducing a more appropriate 3D-PAM than that
used in the previous paper. As a result, we do not find any essential changes in qualitative
behaviour, although some quantitative changes are observed. Moreover, Tc does not increase
monotonically with the strength of the electron correlation; Tc may decrease since it also
depends on the renormalization factor. This fact explains the pressure dependence of Tc.
Thus, in this paper we study the superconductivity in CeMIn5 in detail, in order to identify
the superconducting gap structure and to discuss the pressure dependence of Tc [31].

2. Periodic Anderson model for CeMIn5

A 3D-PAM [29, 32] for CeMIn5 is introduced in this section. The band structure of CeMIn5

comprises several f-bands and conduction bands which are hybridized in a complex manner.
However, it is quite difficult to reproduce such a complicated band structure. Moreover, the
electron correlation among f-electrons is strong and should be distinguished from that among
the conduction bands. Thus, for simplicity, we adopt a 3D-PAM which comprises one f-band
and one conduction band.

Now we discuss the lattice structure. The lattice structure of CeMIn5 is tetragonal, and a
unit cell contains one Ce atom, one M atom and five In atoms. Here, we focus on Ce atoms
in the crystal, since Ce atoms provide 4f-electrons. Therefore we assume a simple tetragonal
crystal whose corners are occupied by Ce atoms.

First, we separate the self-energy term �(k, ω) into the local part �loc(ω) and the non-
local part ��(k, ω) [20]. In principle, this separation is always possible:

�(k, ω) = �loc(ω) + ��(k, ω). (1)

�loc(ω) is the local part of the self-energy term which does not exhibit momentum dependence.
In the vicinity of the Fermi surfaces, the f-electron Green’s function is expressed as
follows [20, 33–35]:

G(k, ω) = 1

ω − εf
k0 − �(k, ω) − V 2

k /
(
ω − εc

k

)

= z0

ω − Ẽ f
k − �̃(k, ω) − Ṽ 2

k /
(
ω − εc

k

) + G inc(k, ω)

= z0G̃(k, ω) + G inc(k, ω), (2)

2



J. Phys.: Condens. Matter 19 (2007) 406219 K Tanaka et al

where z0 = (1 − d�loc(ω=0)

dω
)−1 is the local wavefunction renormalization factor and does not

exhibit momentum dependence. In (2), Ẽ f
k = z0(ε

f
k0 + Re �loc(ω = 0)), Ṽk = √

z0Vk,
G̃(k, ω), �̃(k, ω) = z0��(k, ω), εc

k and G inc(k, ω) are the renormalized f-band dispersion,
the renormalized hybridization term, the renormalized Green’s function, the renormalized non-
local self-energy term, the conduction band dispersion and the incoherent part of the Green’s
function, respectively. Equation (2) indicates that heavy fermion systems are described with
the f-band dispersion and the hybridization term renormalized by z0 and by

√
z0, respectively.

This renormalization is caused by the local part of the interaction. Therefore we introduce a
3D-PAM, in which the f-band dispersion and the hybridization term are renormalized ab initio
due to the local part of the interaction. We calculate �̃(k, ω) and G̃(k, ω) within the Matsubara
frequency formalism based on the renormalized 3D-PAM. We adopt the fluctuation exchange
(FLEX) approximation for calculating �̃(k, ω).

The Hamiltonian for the renormalized 3D-PAM is expressed as follows:

H = H0 + H ′, (3)

H0 =
∑

k,σ

[
Ẽ f

k f †
kσ fkσ + εc

k c†
kσ ckσ + Ṽk

(
f †
kσ ckσ + c†

kσ fkσ

)]
, (4)

H ′ = Ũ

N

∑

k,k′
f †
k↑ f †

q−k↓ fq−k′↑ fk′↓, (5)

where Ũ , Ẽ f
k and Ṽk are the renormalized Coulomb repulsion, the renormalized dispersion

of the f-band and the renormalized hybridization term, respectively. H0 is the unperturbed
Hamiltonian and H ′ is the perturbation term due to the Coulomb repulsion between the f-
electrons.

Ẽ f
k and Ṽk are related to the dispersion of the original f-band εf

k0 and the original
hybridization term Vk, respectively:

Ẽ f
k = z0ε

f
k0, (6)

Ṽk = √
z0Vk. (7)

Re �loc(ω = 0) does not appear in (6) since it is included in the chemical potential of the f-band.
In contrast to the f-band and the hybridization term, the conduction band is not renormalized,
since only the interaction between f-electrons is considered. Vk, εf

k0, and εc
k are determined

from the comparison with the band calculations.
Added to the f-band dispersion and the hybridization term, the Coulomb repulsion term is

also renormalized:

Ũ = z0U . (8)

This result originates from the enhancement of the vertex � = U/z0 and the renormalization
of the interaction Ũ = z0�z0 [20, 34]. According to (6) and (8), the f-band dispersion and the
Coulomb repulsion term are renormalized by the same factor z0. This indicates that Ũ/W̃f is
equal to U/Wf, where Wf and W̃f are the unrenormalized and the renormalized f-bandwidth,
respectively. In this paper, we separate the effect of the electron correlation for CeMIn5

into the local part and the momentum-dependent part. The local part gives rise to the local
renormalization factor z0. On the other hand, the strength of the anisotropic part is determined
by Ũ/W̃f, which is equal to U/Wf. Therefore we stress that the strength of the anisotropic part
is unchanged by the local renormalization.

In order to reproduce correctly the superconducting properties for CeMIn5, we have to
calculate self-consistently all the parameters including Tc, the total mass enhancement factor,
z0 and Ũ from the band structure and the original Coulomb interaction U . This is because z0

3
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and Ũ are determined by the isotropic and the anisotropic part of the interaction, respectively.
However, the self-consistent calculation is quite difficult in heavy fermion systems. Therefore,
we treat the isotropic and anisotropic parts of the electron correlation independently. In other
words, we vary z0 independently of U . This treatment is justified because the symmetry of
the anisotropic part is different from that of the isotropic one, and the pairing interaction is
determined by the anisotropic part. Thus we calculate Tc and the total mass enhancement
factor with various values of z0 and U . Note that the anisotropic part of the correlation depends
strongly on the topology of the Fermi surfaces. In this model. the enhancement of the electron
correlation gives rise to the decrease in z0 and the increase in U .

Equation (3) is rewritten in the 2 × 2 matrix form as follows [33]:

H0 = ( f †
kσ c†

kσ )

(
Ẽ f

k Ṽk

Ṽk εc
k

) (
fkσ

ckσ

)

= ( f †
kσ c†

kσ )

(
c(k) −s(k)

s(k) c(k)

) (
E1k 0
0 E2k

) (
c(k) s(k)

−s(k) c(k)

) (
fkσ

ckσ

)

= ( a†
kσ b†

kσ )

(
E1k 0
0 E2k

) (
akσ

bkσ

)
, (9)

E 1
2 k

= 1
2

{
εc

k + Ẽ f
k ± [(Ẽ f

k − εc
k)

2 + 4Ṽ 2
k ] 1

2

}
, (10)

where fkσ ( f †
kσ ), ckσ (c†

kσ ), akσ (a†
kσ ) and bkσ (b†

kσ ) are the annihilation (creation) operators of
the f-band, the conduction band, band 1 and band 2, respectively. c(k) and s(k) are defined as

c(k) =
{

1

2
+ Ẽ f

k − εc
k

2[(Ẽ f
k − εc

k)
2 + 4Ṽ 2

k ] 1
2

} 1
2

, (11)

s(k) =
{

1

2
− Ẽ f

k − εc
k

2[(Ẽ f
k − εc

k)
2 + 4Ṽ 2

k ] 1
2

} 1
2

. (12)

In (9), the renormalized f-band and the conduction band are hybridized by Ṽk, following which
they are diagonalized into two bands: band 1 and band 2. E1k and E2k denote the dispersions
of band 1 and band 2, respectively (E1k > E2k).

εf
k0, εc

k and Vk are determined such that the Fermi surfaces of band 1 and band 2 reproduce
the Fermi surfaces of the 15th band and the 14th band in the band calculations, respectively.
The 14th band has the largest Fermi surface, and is denoted as the β-band in the de Haas–van
Alphen experiments [24–28]. On the other hand, the 15th band is denoted as the α-band, and
has a smaller Fermi surface than the 14th band. εf

k0 is given as follows:

εf
k0 = μf + 2tf1(cos ka + cos kb) + 4tf2 cos ka cos kb + 2tf3(cos 2ka + cos 2kb)

+ cos kc[tf4 + 2tf5(cos ka cos kb) + 4tf6 cos ka cos kb + 2tf7(cos 2ka + cos 2kb)],
(13)

where μf = 0.00, tf1 = 0.43, tf2 = −0.06, tf3 = 0.06, tf4 = −0.1, tf5 = −0.06, tf6 = −0.06
and tf7 = 0.06. Next, εc

k is expressed as follows:

εc
k = μc + 2tc1(cos ka + cos kb) + 4tc2 cos ka cos kb + 2tc3(cos 2ka + cos 2kb)

+ cos kc[tc4 + 2tc5(cos ka + cos kb)

+ 4tc6 cos ka cos kb + 2tc7(cos 2ka + cos 2kb)]. (14)

Here, we fix μc = −0.70, tc1 = 1.00, tc2 = −0.60, tc3 = 0.48, tc4 = −0.3, tc5 = 0.0,
tc6 = −0.4, and tc7 = 0.52. Finally, we determine Vk as follows:

4
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Vk = tv0 + 2tv1(cos ka + cos kb) + 4tv2 cos ka cos kb

+ cos kc(tv3 + 2tv4(cos ka + cos kb) + 4tv5 cos ka cos kb), (15)

with tv0 = 0.30, tv1 = 0.23, tv2 = 0.038, tv3 = 0.30, tv4 = −0.23 and tv5 = −0.038.
In (13), (14) and (15), the kakb-plane corresponds to the basal plane and kc is a component

of the wavevector perpendicular to the basal plane in CeMIn5. tf1–tf7 and tc1–tc7 are the transfer
integrals of the electrons occupying the f-band and the conduction band, respectively. tv0–tv5

are the hybridization term parameters. μf and μc are the chemical potentials of the f-band and
the conduction band, respectively. We set tc1 = 1; this is referred to as the energy unit hereafter.
Comparing the obtained bands with the result of the band calculations, we determine that tc1

corresponds to a temperature of around 3000–4000 K. We assert that this model reproduces
the result of the band calculations with regard to the electronic structure near the Fermi level.
Hereafter, we fix εf

k0, εc
k and Vk and vary U and z0.

3. Numerical calculation by FLEX

We divide the first Brillouin zone into 64 × 64 meshes in the kakb-plane and 32 meshes in the
kc-direction. We consider 2048 Matsubara frequencies. For simplicity, we hereafter abbreviate
the tildes on the renormalized Green’s function and self-energy term.

The dressed Green’s function Ĝ(k) is expressed as the following:

Ĝ(k) = Ĝ0(k) + Ĝ0(k)�̂(k)Ĝ(k), (16)

with

Ĝ(k) =
(

Gf(k) Gfc(k)

Gcf(k) Gc(k)

)
, (17)

�̂(k) =
(

�f
n(k) − δμ 0

0 0

)
. (18)

Ĝ0(k) is defined as follows:

Ĝ0(k) =
(

Gf
0(k) Gfc

0 (k)

Gcf
0 (k) Gc

0(k)

)

=
(

c2G1(k) + s2G2(k) sc(G1(k) − G2(k))

sc(G1(k) − G2(k)) s2G1(k) + c2G2(k)

)
, (19)

where

G 1
2
(k) = 1

iεm − E 1
2 k

. (20)

In (20), εm = (2m + 1)πT is a fermion Matsubara frequency. The shift in chemical potential
δμ is determined by the conservation of the total electron number:

∑

k

(
Gf(k) + Gc(k) − Gf

0(k) − Gc
0(k)

) = 0. (21)

In (18), the self-energy correction term appears only in the f-electron component. This is
because electron correlation is taken into account only among f-electrons.

In order to consider the effect of the anisotropic part of the interaction, we need to
approximate the non-local part of the self-energy terms. From the various methods available for
approximation, we adopt the FLEX approximation [36–39, 21] in this paper. This is because

5
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Figure 1. The Fermi surface of band 1. The figures on the left, middle and right correspond to
kc = 0, kc = π/2 and kc = π , respectively. U , z0 and T are fixed at 2.10, 0.12 and 0.000 48,
respectively.

FLEX reproduces well the characteristics of strong AF fluctuation systems. In the FLEX
approximation, the non-local normal self-energy term �f

n(k) is written as follows:

�f
n(k) = T

N

∑

q

V (q)Gf (k − q), (22)

V (q) = 3

2
Ũ 2 χ̃(q)

1 − Ũ χ̃ (q)
+ 1

2
Ũ 2 χ̃(q)

1 + Ũ χ̃(q)
− Ũ 2χ̃(q). (23)

Hereafter, (k, εn) and (q, ωn) are abbreviated as k and q , respectively. Here, ωm = 2mπT is a
boson Matsubara frequency. In (23), χ̃ (q) is the renormalized spin susceptibility and is defined
as follows:

χ̃ (q) = − T

N

∑

q

Gf(k + q)Gf(k). (24)

With increasing Ũ , Ũ χ̃max(q) increases. Here χ̃max(q) is the maximum value of χ̃(q).
Equation (23) shows that V (q) diverges when Ũ χ̃max(q) reaches unity. This corresponds to
an antiferromagnetic (AF) transition. However, it is difficult to calculate the self-energy term
for Ũ χ̃max(q) → 1. Therefore, we assume UAF as the value of U when Ũ χ̃max(q) reaches
0.998.

Figures 1 and 2 show the Fermi surfaces of bands 1 and 2, respectively. It is indicated
from the calculation that the Fermi surfaces are nearly unchanged as a function of z0 and of U ,
with εf

k0, εc
k and Vk fixed. The band structure and the density of states (DOS) for the f-band are

plotted in figures 3 and 4, respectively. The DOS of the f-band ρf(ε) is given by

ρf(ε) = − 1

π
Im

∑

k

GfR(k, ε). (25)

Here, GfR(k, ε) is obtained by the analytic continuation iεn → ε from Gf(k). It is indicated
from the calculation that the DOS at the Fermi level is nearly unchanged as a function of U ,
with εf

k0, εc
k and Vk fixed. On the other hand, the DOS varies in inverse proportion to z0.

Next, we calculate Tc by solving the linearized Dyson–Gor’kov equation [37–39]. First of
all, the normal and anomalous Green’s functions satisfy Dyson–Gor’kov equations [33]:

Gf(k) = Gf
0(k) + Gf

0(k)�f
n(k)Gf(k) + Gf

0(k)�a(k)F†(k), (26)

F†(k) = Gf
0(−k)�f

n(−k)F†(k) + Gf
0(−k)�a(−k)Gf (k) . (27)

Approaching Tc within the superconducting state, (26) and (27) are linearized as follows:

F(k) = ∣
∣Gf(k)

∣
∣2

�a(k), (28)

Gf(k) = Gf
0(k) + Gf

0(k)�f
n(k)Gf(k). (29)

6
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Figure 2. The Fermi surface of band 2. The figures on the left, middle and right correspond to
kc = 0, kc = π/2 and kc = π , respectively. U , z0 and T are fixed at 2.10, 0.12 and 0.000 48,
respectively.

Figure 3. The band structure with U = 2.10, z0 = 0.12 and T = 0.000 48, respectively. The solid
and dashed curves correspond to band 1 and band 2, respectively.

The self-energy correction affects only the f-electrons. As a result, we need to consider only the
f-electron Green’s functions. Therefore, we consider only the f-band component of the Green’s
function and the self-energy term. In the linearized Dyson–Gor’kov equation, the anomalous
self-energy term �a(k) is expressed as follows:

�a(k) = − T

N

∑

k′
Va(q)|Gf(k − q)|2�a(k − q), (30)

Va(q) = Ũ 2

(
3

2

χ̃(q)

1 − Ũ χ̃(q)
− 1

2

χ̃(q)

1 + Ũ χ̃(q)

)
+ Ũ . (31)

If we replace the left-hand side of (30) by λ�a(k), it can be considered as an eigenvalue
equation with the eigenvalue λ and the eigenvector �a(k). Here, the eigenvalues for dx2−y2

and dxy pairing symmetries are denoted as λx2−y2 and λxy , respectively. The eigenvalues
λx2−y2 and λxy are obtained by calculating (30) self-consistently, using the initial values of
�a(k) ∝ cos ka − cos kb and sin ka sin kb, respectively.

Figure 5 shows λx2−y2 for various values of U for z0 = 0.12 and T = 0.000 48.
According to the result, λx2−y2 reaches unity with U ∼ 1.96. On the other hand, a positive
value is not obtained for λxy from the calculation. This indicates that the dxy pairing state

7
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Figure 4. The DOS of the f-band with U = 2.10, z0 = 0.12 and T = 0.000 48.

Figure 5. λx2−y2 is plotted. z0 and T are fixed at 0.12 and 0.000 48, respectively. λxy is not plotted,
since a positive value is not obtained.

is never realized in CeMIn5. In fact, the dx2−y2 state possesses the maximum eigenvalue
among the gap symmetries. This fact indicates that dx2−y2 pairing symmetry is actually
realized in superconducting CeMIn5. This is considered to result from the AF fluctuation.
The susceptibility χ̃(q, ω0) is plotted in figure 6. Figure 6 indicates that χ̃(q, ω0) has a peak
at the M-point, that is, q = (π, π, 0). This suggests the existence of AF fluctuation. This is
consistent with experiments, such as NQR measurement.

Tc is the temperature at which λx2−y2 reaches unity. The calculated Tc for dx2−y2 symmetry
is plotted in figures 7 and 8. Figure 7 shows the U -dependence of Tc with z0 fixed to 0.12.
Figure 7 indicates that Tc increases with the increase in U . On the other hand, figure 8 shows
the z0-dependence of Tc with U fixed to 2.10. It is indicated that Tc increases approximately in
proportion to z0.

The behaviour of Tc is explained as follows. When U is fixed, W̃f and Ũ vary
approximately in proportion to z0. Moreover, the Fermi surface is nearly unchanged with
the variation of z0. It is considered that z0 affects Tc by scaling the energy [31]. Therefore,

8
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Figure 6. The susceptibility χ̃(q, ω0) is plotted. U , z0 and T are fixed at 2.10, 0.12 and 0.000 48,
respectively. χ̃ (q, ω0) has a peak at the M-point, that is, q = (π, π, 0). This corresponds to AF
fluctuation.

Figure 7. U -dependence of Tc for dx2−y2 symmetry is plotted. z0 is fixed at 0.12. At U = 2.159,
the system exhibits AF transition.

Tc varies in proportion to z0. On the other hand, the pairing symmetry is determined mainly
by the momentum-dependent parts of the interaction, especially by the topology of the Fermi
surfaces. Tc is determined by the strength of the anisotropic part of the correlation: however,
it does not account for the energy-scaling factor arising from the local renormalization factor
z0. In our model, the strength of the anisotropic part is determined by Ũ/W̃f. Ũ/W̃f is equal

9
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Figure 8. The dependence of Tc on z0 is shown. Tc varies proportionally to z0, due to the energy
scaling. U is fixed at 2.10.

to U/Wf. Here, the unrenormalized f-bandwidth Wf is fixed in this paper, since εf
k0 is fixed.

Therefore, we can treat U as the parameter for the strength of the anisotropic part. As a result,
Tc is affected by U through the non-local part of the quasiparticle interaction, and scaled by z0

through the local renormalization.
Next, we investigate the total mass enhancement factor for the f-band. The total mass

enhancement factor is defined as the inverse of the total wavefunction renormalization factor
and is expressed as follows:

ztot(k)−1 = z−1(k)z−1
0 , (32)

where the non-local mass enhancement factor z−1(k) is defined as z−1(k) = 1 −
∂Re�R

n (k, ε)/∂ε|ε=0. We define z−1
tot as the average of z−1

tot (k) over the k-space. Hereafter,
we denote z−1

tot as the total mass enhancement factor.
Figures 9 and 10 show the dependences of z−1

tot on z0 and U , respectively. Figure 9 shows
that z−1

tot decreases in inverse proportion to increasing z0. This is because the Coulomb repulsion
term and the f-band dispersion are renormalized by the same factor z0, and therefore z−1(k)

is nearly unchanged with varying z0. On the other hand, z−1
tot increases with the increase in U .

This is due to the increase in z−1(k), which is generally observed in PAM and the Hubbard
model.

Next, we consider fitting the parameters U and z0 in our model. We cannot necessarily
equate the measured cyclotron mass of the α- and β-band to the calculated value of z−1

tot in
our model. Nevertheless, it is considered that the measured cyclotron mass and z−1

tot are of the
same order. The cyclotron masses of the α- and β-bands for CeCoIn5 are approximately 15
and 60, respectively, at ambient pressure [27]. Therefore we assume z−1

tot to be 30, which is the
geometric mean of the cyclotron mass of the α- and β-bands.

According to figures 7–10, Tc and z−1
tot for U = 2.12 and z0 = 0.12 is approximately

0.0006 and 30, respectively. Since tc1 is of the order of 3000–4000 K, the calculated Tc

is approximately 2 K, which coincides approximately with the measured Tc for CeCoIn5 at
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Figure 9. The dependence of z−1
tot on U with z0 and T fixed at 2.10, 0.12 and 0.000 48, respectively.

z−1
tot increases with the increase in U .

Figure 10. The dependence of z−1
tot on z0 with U and T fixed at 2.10 and 0.000 48, respectively. z−1

tot
varies in inverse proportion to z0.

ambient pressure. Therefore, we assume that U = 2.12 and z0 = 0.12 for CeCoIn5, since Tc

and the mass enhancement factor are reproduced well. We can fit the parameters for CeIrIn5

similarly. For CeIrIn5 with Tc = 0.4 K, we estimate Tc and z−1
tot at 0.000 12 and 20, respectively.

We obtain U = 1.61 and z0 = 0.110 for CeIrIn5, which give rise to the estimated value for Tc

and z−1
tot .
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Finally in this section, we discuss the efficiency of the application of FLEX to our model.
It is certain that the FLEX treatment does not reproduce the correct Kondo scale. However, it
is considered that CeMIn5 is near the antiferromagnetic quantum critical point (AF-QCP) and
is not strongly Kondo-like. Moreover, the local part of the correlation, which contributes to
the Kondo scaling, does not affect the pairing interaction for anisotropic superconductivity. In
our model, the local part of the electron correlation is taken into account by introducing the
local renormalization factor z0. This renormalization procedure corresponds to the so-called
Kondo scaling in the case of a single impurity. As a conclusion, AF fluctuation plays a far
more important role in the superconductivity for CeMIn5 than the local part of the electron
correlation. Therefore, the application of FLEX to our model is efficient and reliable for
discussing the superconductivity of CeMIn5.

4. Behaviour of CeMIn5 under hydrostatic pressure

The physical properties of CeMIn5 are sensitive to pressure. For CeCoIn5, �0/kBTc decreases
from a value greater than 4 at ambient pressure to a value lower than 3 at 2 GPa [6, 7]. In
the vicinity of ambient pressure, the decrease of �0/kBTc is quite moderate, while �0/kBTc

decreases markedly under higher pressure (∼1 GPa). Analogous pressure dependence is
observed in �C/γ Tc for CeCoIn5, where �C is the specific heat jump at the superconducting
transition [40, 41]. In the Shubnikov–de Haas experiment for CeCoIn5, the cyclotron masses
for the α- and β-band reduce monotonically with the increase in pressure [27]. A decrease
in C/T up to 1.5 GPa is reported [40]. The decrease in C/T indicates the reduction in the
mass enhancement factor or the expansion of the bandwidth, since C/T is approximately
proportional to the DOS at the Fermi level. Although marked changes in the physical properties
are caused by pressure, the de Haas–van Alphen frequency is nearly unchanged from ambient
pressure up to 3 GPa for CeCoIn5 [27]. This indicates that the Fermi surfaces of CeCoIn5

remain unchanged under pressure.
On the other hand, the ratio �0/kBTc in CeIrIn5 remains nearly constant at approximately

2.5 from ambient pressure up to 2 GPa [9]. With regard to the specific heat measurements,
C/T decreases monotonically up to 2 GPa [42]. A similar pressure dependence is observed
for (1/T1T )

1
2 for the normal state under pressures greater than 1 GPa, where AF fluctuation is

weak [9].
The measurements of �0/kBTc indicate that the superconductivity for CeCoIn5 changes

from a strong coupling superconductivity at ambient pressure to an ordinary one at high
pressure, while the superconductivity for CeIrIn5 is an ordinary one. Based on these facts, we
assume that the electron correlation reduces with the increase in pressure for CeCoIn5. On the
other hand, we assume that the correlation is not strong at ambient pressure and the reduction
in the correlation with the increase in pressure is considerably small for CeIrIn5, as compared
with the case for CeCoIn5.

Moreover, a difference in the pressure dependence of Tc of CeIrIn5 and CeCoIn5 is
observed. For CeCoIn5 [23], Tc increases slightly with increase in pressure up to 1 GPa. Under
pressures greater than 1 GPa, Tc decreases sharply. For CeIrIn5, Tc increases with increase in
pressure up to 3 GPa [9, 43]. The pressure at which Tc reaches the maximum is approximately
1 GPa and 3 GPa for CeCoIn5 [23] and CeIrIn5 [43], respectively. Note that the increase in Tc

from ambient pressure to its maximum is considerably larger in CeIrIn5 than in CeCoIn5.

5. Behaviour of CeMIn5 under hydrostatic pressure: calculation

With the increase in pressure, the bandwidth of the f-band and that of the conduction band
is expanded due to compression. Moreover, the original hybridization term Vk changes under
pressure. As a matter of fact, the change in the band structure under pressure is considered to be

12
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quite complicated. However, the effect of the pressure on PAM is considered to be reproduced
by the reduction in the electron correlation. In the renormalized 3D-PAM, the reduction in the
electron correlation corresponds to the increase in z0 and/or the decrease in U . Here, note that
the expansion in the bandwidth of the f-band also increases the energy scale. We include this
effect in the increase in z0, and assume εf

k0 to be unchanged. As a conclusion, we assert that
the increase in pressure corresponds to the decrease in U and/or the increase in z0. Here, we
assume that εf

k0, εc
k and Vk are fixed. This treatment is justified since Fermi surfaces remain

nearly unchanged under pressure.
Next, we estimate the variation of U and z0 under pressure. In the calculation using

Hubbard model it is indicated that �0/kBTc and �C/γ Tc increase with the increase in U [21].
Since �0/kBTc and �C/γ Tc are not affected by energy scaling in our model, we can assume
that z0 does not affect �0/kBTc or �C/γ Tc. Therefore, �0/kBTc and �C/γ Tc are determined
mainly by U , according to the analogy to the case in the Hubbard model [21]. This suggests
that we can estimate the variation of U from the variation of �0/kBTc and of �C/γ Tc. Then,
we discuss C/T and (1/T1T )

1
2 . C/T is approximately proportional to the DOS at the Fermi

level. Ignoring the effect of AF fluctuation, (1/T1T )
1
2 is also proportional to the DOS. In our

model, the DOS at the Fermi level is not affected by U , and varies in inverse proportion to z0.
Therefore, it is considered that C/T and (1/T1T )

1
2 vary in inverse proportion to z0.

According to �0/kBTc and �C/γ Tc, we can assume that U decreases moderately with the
increase in pressure under low pressure, and that U decreases sharply under high pressure for
CeCoIn5. For CeIrIn5, it is considered that U is nearly unchanged under pressure up to 2 GPa.
On the other hand, we assume that z0 increases with the increase in pressure up to 2 GPa for
CeIrIn5.

Based on the above discussions, we explain the pressure dependence of Tc and cyclotron
mass. First, we discuss CeCoIn5. If we assume that z0 increases with the increase in pressure
obeying the C/T measurements [40], we can explain the pressure dependence of Tc for
CeCoIn5 qualitatively. As plotted in figures 7 and 8, pressure affects Tc as follows: the decrease
in U gives rise to the decrease in Tc, and the increase in z0 gives rise to the increase in Tc. The
pressure dependence of Tc is determined by which effect, decrease in U or increase in z0, is
dominant. In the low-pressure region, the effect of the increase in z0 is dominant since the
decrease in U is moderate. Therefore, Tc increases slightly with the increase in pressure. On
the other hand, in the high-pressure region the effect of the decrease in U is dominant since
the decrease in U is steep. Moreover, the cyclotron mass is explained by the assumed variation
of U and z0 under pressure. Both the decrease in U and the increase in z0 give rise to the
decrease in z−1

tot , as plotted in figures 9 and 10. Therefore, we can explain that pressure reduces
the cyclotron mass.

Next, we discuss Tc for CeIrIn5 up to 2 GPa. It is considered that U remains nearly
unchanged and z0 increases with the increase in pressure. Therefore, we can explain that Tc for
CeIrIn5 increases due to the increase in z0.

6. Conclusion

We have studied the superconductivity in CeMIn5 by using the FLEX approximation on
the basis of a 3D-PAM. We have confirmed that the dx2−y2 pairing symmetry is realized in
CeMIn5 from the comparison of the eigenvalue for the Èliashberg equation. In superconducting
CeMIn5, the dx2−y2 pairing symmetry is realized due to the AF fluctuation.

Furthermore, we have pointed out that there exist two essential parameters that determine
Tc and total mass enhancement. One is the local wavefunction renormalization factor z0, which
scales the bandwidth of quasi-particles. The other is the Coulomb repulsion parameter U ,
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which affects Tc and total mass enhancement through the non-local part of the quasi-particle
interaction. The non-local part of the interaction leads to anisotropic superconductivity due to
the the momentum dependence of the interaction between quasi-particles. With the increase in
pressure, z0 increases and/or U decreases. In our analysis, the increase in U means an increase
in the anisotropic part of the interaction and gives rise to stronger AF fluctuation. On the other
hand, the decrease in z0 corresponds to an increase in the isotropic part of the interaction. The
increase in z0 lifts Tc through the energy scaling, and the decrease in U lowers Tc through the
reduced correlation. We explain the superconductivity in CeMIn5 using this model, in which
Tc and the mass enhancement factor coincide approximately with the experimental results.

Next, we have estimated the variation of U and z0 under pressure. From this estimation,
we have qualitatively explained the pressure dependence of Tc for CeCoIn5 and CeIrIn5. For
CeCoIn5, it is considered that both the increase in z0 and the decrease in U are invoked by
pressure. In the low-pressure region, Tc increases slightly with the increase in pressure. This
is because the decrease in U is moderate and the effect of the increase in z0 is dominant on Tc.
On the other hand, Tc decreases with the increase in pressure in the high-pressure region. This
is because the decrease in U is marked and dominates over the increase in z0. For CeIrIn5, it
is considered that z0 increases with the increase in pressure, while U is nearly unchanged up to
2 GPa. Therefore Tc increases monotonically with the increase in pressure, up to 2 GPa.
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